Star’s ‘Cry’ Heralds New Era for Testing Relativity

Star’s ‘Cry’ Heralds New Era for Testing Relativity

Print Friendly, PDF & Email

Last year, astronomers discovered a quiescent black hole in a distant galaxy that erupted after shredding and consuming a passing star. Now researchers have identified a distinctive X-ray signal observed in the days following the outburst that comes from matter on the verge of falling into the black hole. This tell-tale signal, called a quasi-periodic oscillation or QPO, is a characteristic feature of the accretion disks that often surround the most compact objects in the universe — white dwarf stars, neutron stars and black holes. QPOs have been seen in many stellar-mass black holes, and there is tantalizing evidence for them in a few black holes that may have middleweight masses between 100 and 100,000 times the sun’s.

“This discovery extends our reach to the innermost edge of a black hole located billions of light-years away, which is really amazing. This gives us an opportunity to explore the nature of black holes and test Einstein’s relativity at a time when the universe was very different than it is today,” said Rubens Reis, an Einstein Postdoctoral Fellow at the University of Michigan. Reis led the team that uncovered the QPO signal, a finding described in a paper published in Science Express

Social media & sharing icons powered by UltimatelySocial